Problem

Source:

Tags: number theory, algebra, inequalities



Prove that: (a) if $y<\frac12$ and $n\ge3$ is a natural number then $(y+1)^n\ge y^n+(1+2y)^\frac n2$; (b) if $x,y,z$ and $n\ge3$ are natural numbers for which $x^2-1\le2y$ then $x^n+y^n\ne z^n$.