Prove that if the sum of $x^5,y^5$ and $z^5$, where $x,y$ and $z$ are integer numbers, is divisible by $25$ then the sum of some two of them is divisible by $25$.
Source:
Tags: number theory, Divisibility
Prove that if the sum of $x^5,y^5$ and $z^5$, where $x,y$ and $z$ are integer numbers, is divisible by $25$ then the sum of some two of them is divisible by $25$.