Problem

Source:

Tags: geometry, Concyclic, equal segments



On the side $AB$ of the triangle $ABC$ mark the points $M$ and $N$, such that $BM = BC$ and $AN = AC$. Then on the sides $BC$ and $AC$ mark the points$ P$ and $Q$, respectively, such that $BP = BN$ and $AQ = AM$. Prove that the points $C, Q, M, N$ and $P$ lie on the same circle.