Let a point $P$ inside a parallelogram $ABCD$ be given such that $\angle APB +\angle CPD = 180^o$. Prove that $AB \cdot AD = BP \cdot DP + AP \cdot CP$.
Source:
Tags: geometry, parallelogram
Let a point $P$ inside a parallelogram $ABCD$ be given such that $\angle APB +\angle CPD = 180^o$. Prove that $AB \cdot AD = BP \cdot DP + AP \cdot CP$.