Problem

Source:

Tags: geometry, angles, ratio



The bisector of the interior angle at the vertex $B$ of the triangle $ABC$ and the perpendicular line on side $BC$ passing through the vertex $C$ intersects at $D$. Let $M$ and $N$ be the midpoints of the segments $BC$ and $BD$, respectively, with $N$ on the side $AC$. Find all possibilities of the angles of the triangles $ABC$, if it is known that $\frac{| AM |}{| BC |}=\frac{|CD|}{|BD|}$. .