Problem

Source:

Tags: geometry, Locus, Equilateral



The plane has a circle $\omega$ and a point $A$ outside it. For any point $C$, the point $B$ on the circle $\omega$ is defined such that $ABC$ is an equilateral triangle with vertices $A, B$ and $C$ listed clockwise. Prove that if point $B$ moves along the circle $\omega$, then point $C$ also moves along a circle.