Problem

Source:

Tags: geometry, incenter, Equilateral



In a plane there is a triangle $ABC$. Line $AC$ is tangent to circle $c_A$ at point $C$ and circle $c_A$ passes through point $B$. Line $BC$ is tangent to circle $c_B$ at point $C$ and circle $c_B$ passes through point $A$. The second intersection point $S$ of circles $c_A$ and $c_B$ coincides with the incenter of triangle $ABC$. Prove that the triangle $ABC$ is equilateral.