Circles $c_1, c_2$ with centers $O_1, O_2$, respectively, intersect at points $P$ and $Q$ and touch circle c internally at points $A_1$ and $A_2$, respectively. Line $PQ$ intersects circle c at points $B$ and $D$. Lines $A_1B$ and $A_1D$ intersect circle $c_1$ the second time at points $E_1$ and $F_1$, respectively, and lines $A_2B$ and $A_2D$ intersect circle $c_2$ the second time at points $ E_2$ and $F_2$, respectively. Prove that $E_1, E_2, F_1, F_2$ lie on a circle whose center coincides with the midpoint of line segment $O_1O_2$.