Problem

Source:

Tags: geometric inequality, perpendicular, circumcircle, geometry



Consider an acute-angled triangle $ABC$ and its circumcircle. Let $D$ be a point on the arc $AB$ which does not include point $C$ and let $A_1$ and $B_1$ be points on the lines $DA$ and $DB$, respectively, such that $CA_1 \perp DA$ and $CB_1 \perp DB$. Prove that $|AB| \ge |A_1B_1|$.