Let $O$ be the circumcentre of triangle $ABC$. Lines $AO$ and $BC$ intersect at point $D$. Let $S$ be a point on line $BO$ such that $DS \parallel AB$ and lines $AS$ and $BC$ intersect at point $T$. Prove that if $O, D, S$ and $T$ lie on the same circle, then $ABC$ is an isosceles triangle.