Problem

Source:

Tags: trigonometry, geometric inequality, inequalities, geometry, 3D geometry, angles



Three rays are going out from point $O$ in space, forming pairwise angles $\alpha, \beta$ and $\gamma$ with $0^o<\alpha \le \beta \le \gamma <180^o$. Prove that $\sin \frac{\alpha}{2}+ \sin \frac{\beta}{2} > \sin \frac{\gamma}{2}$.