Problem

Source:

Tags: geometry, radii, equal circles, convex



a) Does there exist a convex quadrangle $ABCD$ satisfying the following conditions (1) $ABCD$ is not cyclic; (2) the sides $AB, BC, CD$ and $DA$ have pairwise different lengths; (3) the circumradii of the triangles $ABC, ADC, BAD$ and $BCD$ are equal? b) Does there exist such a non-convex quadrangle?