Consider the points $D, E$ and $F$ on the respective sides $BC, CA$ and $AB$ of the triangle $ABC$ in a way that the segments $AD, BE$ and $CF$ have a common point $P$. Let $\frac{|AP|}{|PD|}= x,$ $\frac{|BP|}{|PE|}= y$ and $\frac{|CP|}{|PF|}= z$. Prove that $xyz - (x + y + z) = 2$.