Problem

Source:

Tags: geometey, areas, square



Consider the points $A_1$ and $A_2$ on the side $AB$ of the square $ABCD$ taken in such a way that $|AB| = 3 |AA_1| $ and $|AB| = 4 |A_2B|$, similarly consider points $B_1$ and $B_2, C_1$ and $C_2, D_1$ and $D_2$ respectively on the sides $BC$, $CD$ and $DA$. The intersection point of straight lines $D_2A_1$ and $A_2B_1$ is $E$, the intersection point of straight lines $A_2B_1$ and $B_2C_1$ is $F$, the intersection point of straight lines $B_2C_1$ and $C_2D_1$ is $G$ and the intersection point of straight lines $C_2D_1$ and $D_2A_1$ is $H$. Find the area of the square $EFGH$, knowing that the area of $ABCD$ is $1$.