Circles with centres $O_1$ and $O_2$ intersect in two points, let one of which be $A$. The common tangent of these circles touches them respectively in points $P$ and $Q$. It is known that points $O_1, A$ and $Q$ are on a common straight line and points $O_2, A$ and $P$ are on a common straight line. Prove that the radii of the circles are equal.