Consider a point $M$ inside triangle $ABC$ such that triangles $ABM, BCM$ and $CAM$ have equal areas. Prove that $M$ is the intersection point of the medians of triangle $ABC$.
Source:
Tags: geometry, Centroid, equal areas
Consider a point $M$ inside triangle $ABC$ such that triangles $ABM, BCM$ and $CAM$ have equal areas. Prove that $M$ is the intersection point of the medians of triangle $ABC$.