Problem

Source:

Tags: geometry, circumcircle, bisects segment, altitude



In the acute-angled triangle $ABC$ is drawn the altitude $CH$. A ray beginning at point $C$ that lies inside the $\angle BCA$ and intersects for second time the circles circumscribed circles of $\vartriangle BCH$ and $\vartriangle ABC$ at points $X$ and $Y$ respectively. It turned out that $2CX = CY$. Prove that the line $HX$ bisects the segment $AC$. (Hilko Danilo)