Problem

Source:

Tags: geometry, semicircle, angles, equal angles



Let $\Gamma$ be a semicircle with diameter $AB$. On this diameter is selected a point $C$, and on the semicircle are selected points $D$ and $E$ so that $E$ lies between $B$ and $D$. It turned out that $\angle ACD = \angle ECB$. The intersection point of the tangents to $\Gamma$ at points $D$ and $E$ is denoted by $F$. Prove that $\angle EFD=\angle ACD+ \angle ECB$.