In the quadrilateral $ABCD$, the diagonal $AC$ is the bisector $\angle BAD$ and $\angle ADC = \angle ACB$. The points $X, \, \, Y$ are the feet of the perpendiculars drawn from the point $A$ on the lines $BC, \, \, CD$, respectively. Prove that the orthocenter $\Delta AXY$ lies on the line $BD$.