Problem

Source:

Tags: geometry, equal angles, square



On the sides $AB$ and $AD$ of the square $ABCD$, the points $N$ and $P$ are selected, respectively, so that $PN = NC$, the point $Q$ Is a point on the segment $AN$ for which $\angle NCB = \angle QPN$. Prove that $\angle BCQ = \tfrac {1} {2} \angle PQA$.