The two circles ${{w} _ {1}}, \, \, {{w} _ {2}}$ touch externally at the point $Q$. The common external tangent of these circles is tangent to ${{w} _ {1}}$ at the point $B$, $BA$ is the diameter of this circle. A tangent to the circle ${{w} _ {2}} $ is drawn through the point $A$, which touches this circle at the point $C$, such that the points $B$ and $C$ lie in one half-plane relative to the line $AQ$. Prove that the circle ${{w} _ {1}}$ bisects the segment $C $. (Igor Nagel)