Problem

Source:

Tags: geometry, parallelogram, circles, tangent



Inside the parallelogram $ABCD$ are the circles $\gamma_1$ and $\gamma_2$, which are externally tangent at the point $K$. The circle $\gamma_1$ touches the sides $AD$ and $AB$ of the parallelogram, and the circle $\gamma_2$ touches the sides $CD$ and $CB$. Prove that the point $K$ lies on the diagonal $AC$ of the paralelogram.