Problem

Source:

Tags: geometry, rhombus, circumcircle, incenter



In the triangle $ABC$ the angle bisectors $AL$ and $BT$ are drawn, which intersect at the point $I$, and their extensions intersect the circle circumscribed around the triangle $ABC$ at the points $E$ and $D$ respectively. The segment $DE$ intersects the sides $AC$ and $BC$ at the points $F$ and $K$, respectively. Prove that: a) quadrilateral $IKCF$ is rhombus; b) the side of this rhombus is $\sqrt {DF \cdot EK}$. (Rozhkova Maria)