Problem

Source:

Tags: geometry, circumcircle, equal angles, Fixed point, fixed



The points $A$ and $P$ are marked on the plane. Consider all such points $B, C $ of this plane that $\angle ABP = \angle MAB$ and $\angle ACP = \angle MAC $, where $M$ is the midpoint of the segment $BC$. Prove that all the circumscribed circles around the triangle $ABC$ for different points $B$ and $C$ pass through some fixed point other than the point $A$. (Alexei Klurman)