Let $ABCDEF $ be a regular hexagon. On the line $AF $ mark the point $X$so that $ \angle DCX = 45^o$ . Find the value of the angle $FXE$. (Vyacheslav Yasinsky)
Problem
Source:
Tags: geometry, angles, hexagon, Regular
Awesome3.14
13.12.2020 07:04
30 degrees
franzliszt
14.12.2020 02:22
parmenides51 wrote:
Let $ABCDEF $ be a regular hexagon. On the line $AF $ mark the point $X$so that $ \angle DCX = 45^o$ . Find the value of the angle $FXE$.
(Vyacheslav Yasinsky)
Define $X'$ as the unique point on line $AF$ such that $\angle EXF=75^\circ$. In order to prove that $X=X'$ we need to prove that $\angle X'CD=45^\circ$. $\angle X'AC=\angle FAC-\angle CAB=120^\circ-30^\circ=90^\circ$. Note that $\angle AEX'=180^\circ-75^\circ-30^\circ=75^\circ$ so $AX'=AE$. But then note that $\triangle EAC$ is isosceles. So $AX'=AC$ and $\angle \angle ACX'=45^\circ$. Since $\angle ACB=30^\circ$, we see that $\angle X'CD=45^\circ$. So now we can safely deduce that $\angle FXE=75^\circ$. $\blacksquare$
Identical to this problem: https://artofproblemsolving.com/community/c6h2303500