Juku invented an apparatus that can divide any segment into three equal segments. How can you find the midpoint of any segment, using only the Juku made, a ruler and pencil?
Problem
Source:
Tags: geometry, trisector, midpoint, Ruler
Benjamaster7
25.03.2020 09:33
[asy][asy]
size(300);
unitsize(0.75);
defaultpen(linewidth(0.8));
pair A=origin, B=(200,0), C=(133,77);
draw(A--B--C--cycle);
path LLeg=C--A;
path RLeg=C--B;
pair D=waypoint(LLeg,1/3), E=waypoint(LLeg,2/3), F=waypoint(RLeg,1/3), G=waypoint(RLeg,2/3);
dot(D);
dot(E);
dot(F);
dot(G);
label("$A$",A,W);
label("$B$",B,dir(0));
label("$C$",C,N);
label("$D$",D,NW);
label("$E$",E,NW);
label("$F$",F,NE);
label("$G$",G,NE);
draw(E--F^^D--G);
pair [] H=intersectionpoints(E--F,D--G);
dot(H[0]);
label("$H$",H[0],dir(280));
pair M=waypoint(A--B,1/2);
dot(M);
label("$M$",M,S);
draw(M--C);
[/asy][/asy]
Suppose we want to bisect $\overline{AB}.$ Then draw in an arbitrary point $C$ and trisect $\overline{AC}$ and $\overline{BC}$ using points $D,E,F,$ and $G.$ Draw $\overline{DG}$ and $\overline{EF}$ and label their intersection $H.$ The intersection of line $\overleftrightarrow{CH}$ with $\overline{AB}$ is $M,$ the midpoint of $\overline{AB}.$ We are done.
To see why this works, consider $\triangle EGC.$ Its medians $\overline{DG}$ and $\overline{EF}$ intersect at $H,$ so $H$ must be the centroid of $\triangle EGC.$ This implies that the extension of $\overline{CH}$ is a median of $\triangle EGC$ since it passes through the centroid, so by definition it bisects $\overline{EG}.$ Since $\triangle EGC\sim\triangle ABC,$ we can conclude that it bisects $\overline{AB}$ as well.