Problem

Source:

Tags: geometry, circles, fixed



Let $\Gamma_1$ be a circle with centre $A$ and $\Gamma_2$ be a circle with centre $B$, with $A$ lying on $\Gamma_2$. On $\Gamma_2$ there is a (variable) point $P$ not lying on $AB$. A line through $P$ is a tangent of $\Gamma_1$ at $S$, and it intersects $\Gamma_2$ again in $Q$, with $P$ and $Q$ lying on the same side of $AB$. A different line through $Q$ is tangent to $\Gamma_1$ at $T$. Moreover, let $M$ be the foot of the perpendicular to $AB$ through $P$. Let $N$ be the intersection of $AQ$ and $MT$. Show that $N$ lies on a line independent of the position of $P$ on $\Gamma_2$.