Problem

Source:

Tags: Comc, 2017 COMC



Source: 2017 Canadian Open Math Challenge, Problem B4 Numbers $a$, $b$ and $c$ form an arithmetic sequence if $b - a = c - b$. Let $a$, $b$, $c$ be positive integers forming an arithmetic sequence with $a < b < c$. Let $f(x) = ax2 + bx + c$. Two distinct real numbers $r$ and $s$ satisfy $f(r) = s$ and $f(s) = r$. If $rs = 2017$, determine the smallest possible value of $a$.