Problem

Source:

Tags: geometry, Quadrilaterals



Let $ABCD$ be a convex quadrilateral such that $\angle{BAD} = 90^{\circ}$ and its diagonals $AC$ and $BD$ are perpendicular. Let $M$ be the midpoint of side $CD$, and $E$ be the intersection of $BM$ and $AC$. Let $F$ be a point on side $AD$ such that $BM$ and $EF$ are perpendicular. If $CE = AF\sqrt{2}$ and $FD = CE\sqrt{2}$, show that $ABCD$ is a square.