Problem

Source:

Tags: geometry, circumcircle



Given a acute triangle $PA_1B_1$ is inscribed in the circle $\Gamma$ with radius $1$. for all integers $n \ge 1$ are defined: $C_n$ the foot of the perpendicular from $P$ to $A_nB_n$ $O_n$ is the center of $\odot (PA_nB_n)$ $A_{n+1}$ is the foot of the perpendicular from $C_n$ to $PA_n$ $B_{n+1} \equiv PB_n \cap O_nA_{n+1}$ If $PC_1 =\sqrt{2}$, find the length of $PO_{2015}$

HIDE: Source Cono Sur Olympiad - 2015 - Day 1 - Problem 3