Let $ABC$ be an acute triangle, and let $X$ be a variable interior point on the minor arc $BC$ of its circumcircle. Let $P$ and $Q$ be the feet of the perpendiculars from $X$ to lines $CA$ and $CB$, respectively. Let $R$ be the intersection of line $PQ$ and the perpendicular from $B$ to $AC$. Let $\ell$ be the line through $P$ parallel to $XR$. Prove that as $X$ varies along minor arc $BC$, the line $\ell$ always passes through a fixed point. (Specifically: prove that there is a point $F$, determined by triangle $ABC$, such that no matter where $X$ is on arc $BC$, line $\ell$ passes through $F$.) Robert Simson et al.
2014 USA Team Selection Test
December TST
Let $a_1,a_2,a_3,\ldots$ be a sequence of integers, with the property that every consecutive group of $a_i$'s averages to a perfect square. More precisely, for every positive integers $n$ and $k$, the quantity \[\frac{a_n+a_{n+1}+\cdots+a_{n+k-1}}{k}\] is always the square of an integer. Prove that the sequence must be constant (all $a_i$ are equal to the same perfect square). Evan O'Dorney and Victor Wang
Let $n$ be an even positive integer, and let $G$ be an $n$-vertex graph with exactly $\tfrac{n^2}{4}$ edges, where there are no loops or multiple edges (each unordered pair of distinct vertices is joined by either 0 or 1 edge). An unordered pair of distinct vertices $\{x,y\}$ is said to be amicable if they have a common neighbor (there is a vertex $z$ such that $xz$ and $yz$ are both edges). Prove that $G$ has at least $2\textstyle\binom{n/2}{2}$ pairs of vertices which are amicable. Zoltán Füredi (suggested by Po-Shen Loh)
January TST
Let $n$ be a positive even integer, and let $c_1, c_2, \dots, c_{n-1}$ be real numbers satisfying \[ \sum_{i=1}^{n-1} \left\lvert c_i-1 \right\rvert < 1. \] Prove that \[ 2x^n - c_{n-1}x^{n-1} + c_{n-2}x^{n-2} - \dots - c_1x^1 + 2 \] has no real roots.
Let $ABCD$ be a cyclic quadrilateral, and let $E$, $F$, $G$, and $H$ be the midpoints of $AB$, $BC$, $CD$, and $DA$ respectively. Let $W$, $X$, $Y$ and $Z$ be the orthocenters of triangles $AHE$, $BEF$, $CFG$ and $DGH$, respectively. Prove that the quadrilaterals $ABCD$ and $WXYZ$ have the same area.
For a prime $p$, a subset $S$ of residues modulo $p$ is called a sum-free multiplicative subgroup of $\mathbb F_p$ if $\bullet$ there is a nonzero residue $\alpha$ modulo $p$ such that $S = \left\{ 1, \alpha^1, \alpha^2, \dots \right\}$ (all considered mod $p$), and $\bullet$ there are no $a,b,c \in S$ (not necessarily distinct) such that $a+b \equiv c \pmod p$. Prove that for every integer $N$, there is a prime $p$ and a sum-free multiplicative subgroup $S$ of $\mathbb F_p$ such that $\left\lvert S \right\rvert \ge N$. Proposed by Noga Alon and Jean Bourgain
These problems are copyright $\copyright$ Mathematical Association of America.