2004 USA Team Selection Test

Day 1

1

Suppose $a_1, a_2, \ldots, a_n$ and $b_1, b_2, \ldots, b_n$ are real numbers such that \[ (a_1 ^ 2 + a_2 ^ 2 + \cdots + a_n ^ 2 -1)(b_1 ^ 2 + b_2 ^ 2 + \cdots + b_n ^ 2 - 1) > (a_1 b_1 + a_2 b_2 + \cdots + a_n b_n - 1)^2. \] Prove that $a_1 ^ 2 + a_2 ^ 2 + \cdots + a_n ^ 2 > 1$ and $b_1 ^ 2 + b_2 ^ 2 + \cdots + b_n ^ 2 > 1$.

2

Assume $n$ is a positive integer. Considers sequences $a_0, a_1, \ldots, a_n$ for which $a_i \in \{1, 2, \ldots , n\}$ for all $i$ and $a_n = a_0$. (a) Suppose $n$ is odd. Find the number of such sequences if $a_i - a_{i-1} \not \equiv i \pmod{n}$ for all $i = 1, 2, \ldots, n$. (b) Suppose $n$ is an odd prime. Find the number of such sequences if $a_i - a_{i-1} \not \equiv i, 2i \pmod{n}$ for all $i = 1, 2, \ldots, n$.

3

Draw a $2004 \times 2004$ array of points. What is the largest integer $n$ for which it is possible to draw a convex $n$-gon whose vertices are chosen from the points in the array?

Day 2

4

Let $ABC$ be a triangle. Choose a point $D$ in its interior. Let $\omega_1$ be a circle passing through $B$ and $D$ and $\omega_2$ be a circle passing through $C$ and $D$ so that the other point of intersection of the two circles lies on $AD$. Let $\omega_1$ and $\omega_2$ intersect side $BC$ at $E$ and $F$, respectively. Denote by $X$ the intersection of $DF$, $AB$ and $Y$ the intersection of $DE, AC$. Show that $XY \parallel BC$.

5

Let $A = (0, 0, 0)$ in 3D space. Define the weight of a point as the sum of the absolute values of the coordinates. Call a point a primitive lattice point if all of its coordinates are integers whose gcd is 1. Let square $ABCD$ be an unbalanced primitive integer square if it has integer side length and also, $B$ and $D$ are primitive lattice points with different weights. Prove that there are infinitely many unbalanced primitive integer squares such that the planes containing the squares are not parallel to each other.

6

Define the function $f: \mathbb N \cup \{0\} \to \mathbb{Q}$ as follows: $f(0) = 0$ and \[ f(3n+k) = -\frac{3f(n)}{2} + k , \] for $k = 0, 1, 2$. Show that $f$ is one-to-one and determine the range of $f$.

None

These problems are copyright $\copyright$ Mathematical Association of America.