Suppose $a_1, a_2, \ldots, a_n$ and $b_1, b_2, \ldots, b_n$ are real numbers such that \[ (a_1 ^ 2 + a_2 ^ 2 + \cdots + a_n ^ 2 -1)(b_1 ^ 2 + b_2 ^ 2 + \cdots + b_n ^ 2 - 1) > (a_1 b_1 + a_2 b_2 + \cdots + a_n b_n - 1)^2. \] Prove that $a_1 ^ 2 + a_2 ^ 2 + \cdots + a_n ^ 2 > 1$ and $b_1 ^ 2 + b_2 ^ 2 + \cdots + b_n ^ 2 > 1$.
2004 USA Team Selection Test
Day 1
Assume $n$ is a positive integer. Considers sequences $a_0, a_1, \ldots, a_n$ for which $a_i \in \{1, 2, \ldots , n\}$ for all $i$ and $a_n = a_0$. (a) Suppose $n$ is odd. Find the number of such sequences if $a_i - a_{i-1} \not \equiv i \pmod{n}$ for all $i = 1, 2, \ldots, n$. (b) Suppose $n$ is an odd prime. Find the number of such sequences if $a_i - a_{i-1} \not \equiv i, 2i \pmod{n}$ for all $i = 1, 2, \ldots, n$.
Draw a $2004 \times 2004$ array of points. What is the largest integer $n$ for which it is possible to draw a convex $n$-gon whose vertices are chosen from the points in the array?
Day 2
Let $ABC$ be a triangle. Choose a point $D$ in its interior. Let $\omega_1$ be a circle passing through $B$ and $D$ and $\omega_2$ be a circle passing through $C$ and $D$ so that the other point of intersection of the two circles lies on $AD$. Let $\omega_1$ and $\omega_2$ intersect side $BC$ at $E$ and $F$, respectively. Denote by $X$ the intersection of $DF$, $AB$ and $Y$ the intersection of $DE, AC$. Show that $XY \parallel BC$.
Let $A = (0, 0, 0)$ in 3D space. Define the weight of a point as the sum of the absolute values of the coordinates. Call a point a primitive lattice point if all of its coordinates are integers whose gcd is 1. Let square $ABCD$ be an unbalanced primitive integer square if it has integer side length and also, $B$ and $D$ are primitive lattice points with different weights. Prove that there are infinitely many unbalanced primitive integer squares such that the planes containing the squares are not parallel to each other.
Define the function $f: \mathbb N \cup \{0\} \to \mathbb{Q}$ as follows: $f(0) = 0$ and \[ f(3n+k) = -\frac{3f(n)}{2} + k , \] for $k = 0, 1, 2$. Show that $f$ is one-to-one and determine the range of $f$.
These problems are copyright $\copyright$ Mathematical Association of America.