2002 Bulgaria National Olympiad

Day 1

1

Let $a_1, a_2... $ be an infinite sequence of real numbers such that $a_{n+1}=\sqrt{{a_n}^2+a_n-1}$. Prove that $a_1 \notin (-2,1)$ Proposed by Oleg Mushkarov and Nikolai Nikolov

2

Consider the orthogonal projections of the vertices $A$, $B$ and $C$ of triangle $ABC$ on external bisectors of $ \angle ACB$, $ \angle BAC$ and $ \angle ABC$, respectively. Prove that if $d$ is the diameter of the circumcircle of the triangle, which is formed by the feet of projections, while $r$ and $p$ are the inradius and the semiperimeter of triangle $ABC$, prove that $r^2+p^2=d^2$ Proposed by Alexander Ivanov

3

Given are $n^2$ points in the plane, such that no three of them are collinear, where $n \geq 4$ is the positive integer of the form $3k+1$. What is the minimal number of connecting segments among the points, such that for each $n$-plet of points we can find four points, which are all connected to each other? Proposed by Alexander Ivanov and Emil Kolev

Day 2

4

Let $I$ be the incenter of a non-equilateral triangle $ABC$ and $T_1$, $T_2$, and $T_3$ be the tangency points of the incircle with the sides $BC$, $CA$ and $AB$, respectively. Prove that the orthocenter of triangle $T_1T_2T_3$ lies on the line $OI$, where $O$ is the circumcenter of triangle $ABC$. Proposed by Georgi Ganchev

5

Find all pairs $(b,c)$ of positive integers, such that the sequence defined by $a_1=b$, $a_2=c$ and $a_{n+2}= \left| 3a_{n+1}-2a_n \right|$ for $n \geq 1$ has only finite number of composite terms. Proposed by Oleg Mushkarov and Nikolai Nikolov

6

Find the smallest number $k$, such that $ \frac{l_a+l_b}{a+b}<k$ for all triangles with sides $a$ and $b$ and bisectors $l_a$ and $l_b$ to them, respectively. Proposed by Sava Grodzev, Svetlozar Doichev, Oleg Mushkarov and Nikolai Nikolov