Juan writes the list of pairs $(n, 3^n)$, with $n=1, 2, 3,...$ on a chalkboard. As he writes the list, he underlines the pairs $(n, 3^n)$ when $n$ and $3^n$ have the same units digit. What is the $2013^{th}$ underlined pair?
2013 CentroAmerican
Day 1
Around a round table the people $P_1, P_2,..., P_{2013}$ are seated in a clockwise order. Each person starts with a certain amount of coins (possibly none); there are a total of $10000$ coins. Starting with $P_1$ and proceeding in clockwise order, each person does the following on their turn: If they have an even number of coins, they give all of their coins to their neighbor to the left. If they have an odd number of coins, they give their neighbor to the left an odd number of coins (at least $1$ and at most all of their coins) and keep the rest. Prove that, repeating this procedure, there will necessarily be a point where one person has all of the coins.
Let $ABCD$ be a convex quadrilateral and let $M$ be the midpoint of side $AB$. The circle passing through $D$ and tangent to $AB$ at $A$ intersects the segment $DM$ at $E$. The circle passing through $C$ and tangent to $AB$ at $B$ intersects the segment $CM$ at $F$. Suppose that the lines $AF$ and $BE$ intersect at a point which belongs to the perpendicular bisector of side $AB$. Prove that $A$, $E$, and $C$ are collinear if and only if $B$, $F$, and $D$ are collinear.
Day 2
Ana and Beatriz take turns in a game that starts with a square of side $1$ drawn on an infinite grid. Each turn consists of drawing a square that does not overlap with the rectangle already drawn, in such a way that one of its sides is a (complete) side of the figure already drawn. A player wins if she completes a rectangle whose area is a multiple of $5$. If Ana goes first, does either player have a winning strategy?
Let $ABC$ be an acute triangle and let $\Gamma$ be its circumcircle. The bisector of $\angle{A}$ intersects $BC$ at $D$, $\Gamma$ at $K$ (different from $A$), and the line through $B$ tangent to $\Gamma$ at $X$. Show that $K$ is the midpoint of $AX$ if and only if $\frac{AD}{DC}=\sqrt{2}$.
Determine all pairs of non-constant polynomials $p(x)$ and $q(x)$, each with leading coefficient $1$, degree $n$, and $n$ roots which are non-negative integers, that satisfy $p(x)-q(x)=1$.