2012 Nordic

1

The real numbers $a, b, c$ are such that $a^2 + b^2 = 2c^2$, and also such that $a \ne b, c \ne -a, c \ne -b$. Show that \[\frac{(a+b+2c)(2a^2-b^2-c^2)}{(a-b)(a+c)(b+c)}\] is an integer.

2

Given a triangle $ABC$, let $P$ lie on the circumcircle of the triangle and be the midpoint of the arc $BC$ which does not contain $A$. Draw a straight line $l$ through $P$ so that $l$ is parallel to $AB$. Denote by $k$ the circle which passes through $B$, and is tangent to $l$ at the point $P$. Let $Q$ be the second point of intersection of $k$ and the line $AB$ (if there is no second point of intersection, choose $Q = B$). Prove that $AQ = AC$.

3

Find the smallest positive integer $n$, such that there exist $n$ integers $x_1, x_2, \dots , x_n$ (not necessarily different), with $1\le x_k\le n$, $1\le k\le n$, and such that \[x_1 + x_2 + \cdots + x_n =\frac{n(n + 1)}{2},\quad\text{ and }x_1x_2 \cdots x_n = n!,\] but $\{x_1, x_2, \dots , x_n\} \ne \{1, 2, \dots , n\}$.

4

The number $1$ is written on the blackboard. After that a sequence of numbers is created as follows: at each step each number $a$ on the blackboard is replaced by the numbers $a - 1$ and $a + 1$; if the number $0$ occurs, it is erased immediately; if a number occurs more than once, all its occurrences are left on the blackboard. Thus the blackboard will show $1$ after $0$ steps; $2$ after $1$ step; $1, 3$ after $2$ steps; $2, 2, 4$ after $3$ steps, and so on. How many numbers will there be on the blackboard after $n$ steps?