2021 Argentina National Olympiad Level 2

Level 2

Day 1

1

You have two blackboards $A$ and $B$. You have to write on them some of the integers greater than or equal to $2$ and less than or equal to $20$ in such a way that each number on blackboard $A$ is co-prime with each number on blackboard $B.$ Determine the maximum possible value of multiplying the number of numbers written in $A$ by the number of numbers written in $B$.

2

In a semicircle with center $O$, let $C$ be a point on the diameter $AB$ different from $A, B$ and $O.$ Draw through $C$ two rays such that the angles that these rays form with the diameter $AB$ are equal and that they intersect at the semicircle at $D$ and at $E$. The line perpendicular to $CD$ through $D$ intersects the semicircle at $K.$ Prove that if $D\neq E,$ then $KE$ is parallel to $AB.$

3

A circle is divided into $2n$ equal arcs by $2n$ points. Find all $n>1$ such that these points can be joined in pairs using $n$ segments, all of different lengths and such that each point is the endpoint of exactly one segment.

Day 2

4

The sum of several positive integers, not necessarily different, all of them less than or equal to $10$, is equal to $S$. We want to distribute all these numbers into two groups such that the sum of the numbers in each group is less than or equal to $80.$ Determine all values of $S$ for which this is possible.

5

Determine all positive integers $n$ such that $$n\cdot 2^{n-1}+1$$is a perfect square.

6

Decide if it is possible to choose $330$ points in the plane so that among all the distances that are formed between two of them there are at least $1700$ that are equal.