Prove that for positive reals $a$,$b$,$c$ so that $a+b+c+abc=4$, \[\left (1+\dfrac{a}{b}+ca \right )\left (1+\dfrac{b}{c}+ab \right)\left (1+\dfrac{c}{a}+bc \right) \ge 27\] holds.
2014 Turkey Junior National Olympiad
1
2
Determine the minimum possible amount of distinct prime divisors of $19^{4n}+4$, for a positive integer $n$.
3
There are $2014$ balls with $106$ different colors, $19$ of each color. Determine the least possible value of $n$ so that no matter how these balls are arranged around a circle, one can choose $n$ consecutive balls so that amongst them, there are $53$ balls with different colors.
4
$ABC$ is an acute triangle with orthocenter $H$. Points $D$ and $E$ lie on segment $BC$. Circumcircle of $\triangle BHC$ instersects with segments $AD$,$AE$ at $P$ and $Q$, respectively. Prove that if $BD^2+CD^2=2DP\cdot DA$ and $BE^2+CE^2=2EQ\cdot EA$, then $BP=CQ$.