2013 Turkey Junior National Olympiad

1

Let $x, y, z$ be real numbers satisfying $x+y+z=0$ and $x^2+y^2+z^2=6$. Find the maximum value of \[ |(x-y)(y-z)(z-x) | \]

2

Find all prime numbers $p, q, r$ satisfying the equation \[ p^4+2p+q^4+q^2=r^2+4q^3+1 \]

3

Let $ABC$ be a triangle such that $AC>AB.$ A circle tangent to the sides $AB$ and $AC$ at $D$ and $E$ respectively, intersects the circumcircle of $ABC$ at $K$ and $L$. Let $X$ and $Y$ be points on the sides $AB$ and $AC$ respectively, satisfying \[ \frac{AX}{AB}=\frac{CE}{BD+CE} \quad \text{and} \quad \frac{AY}{AC}=\frac{BD}{BD+CE} \] Show that the lines $XY, BC$ and $KL$ are concurrent.

4

Player $A$ places an odd number of boxes around a circle and distributes $2013$ balls into some of these boxes. Then the player $B$ chooses one of these boxes and takes the balls in it. After that the player $A$ chooses half of the remaining boxes such that none of two are consecutive and take the balls in them. If player $A$ guarantees to take $k$ balls, find the maximum possible value of $k$.