1
Let $ABCD$ be a cyclic quadrilateral, and $E$ be the intersection of its diagonals. If $m(\widehat{ADB}) = 22.5^\circ$, $|BD|=6$, and $|AD|\cdot|CE|=|DC|\cdot|AE|$, find the area of the quadrilateral $ABCD$.
Let $ABCD$ be a cyclic quadrilateral, and $E$ be the intersection of its diagonals. If $m(\widehat{ADB}) = 22.5^\circ$, $|BD|=6$, and $|AD|\cdot|CE|=|DC|\cdot|AE|$, find the area of the quadrilateral $ABCD$.
From the positive integers, $m,m+1,\dots,m+n$, only the sum of digits of $m$ and the sum of digits of $m+n$ are divisible by $8$. Find the maximum value of $n$.
How many subsets of $\{1,2,3,4,5,6,7,8,9,10,11\}$ contain no two consequtive numbers?