Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, and $CF$, and let $O$ be the center of its circumcircle. Show that the segments $OA$, $OF$, $OB$, $OD$, $OC$, $OE$ dissect the triangle $ABC$ into three pairs of triangles that have equal areas.
2013 APMO
Determine all positive integers $n$ for which $\dfrac{n^2+1}{[\sqrt{n}]^2+2}$ is an integer. Here $[r]$ denotes the greatest integer less than or equal to $r$.
For $2k$ real numbers $a_1, a_2, ..., a_k$, $b_1, b_2, ..., b_k$ define a sequence of numbers $X_n$ by \[ X_n = \sum_{i=1}^k [a_in + b_i] \quad (n=1,2,...). \] If the sequence $X_N$ forms an arithmetic progression, show that $\textstyle\sum_{i=1}^k a_i$ must be an integer. Here $[r]$ denotes the greatest integer less than or equal to $r$.
Let $a$ and $b$ be positive integers, and let $A$ and $B$ be finite sets of integers satisfying (i) $A$ and $B$ are disjoint; (ii) if an integer $i$ belongs to either to $A$ or to $B$, then either $i+a$ belongs to $A$ or $i-b$ belongs to $B$. Prove that $a\left\lvert A \right\rvert = b \left\lvert B \right\rvert$. (Here $\left\lvert X \right\rvert$ denotes the number of elements in the set $X$.)
Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$, and let $P$ be a point on the extension of $AC$ such that $PB$ and $PD$ are tangent to $\omega$. The tangent at $C$ intersects $PD$ at $Q$ and the line $AD$ at $R$. Let $E$ be the second point of intersection between $AQ$ and $\omega$. Prove that $B$, $E$, $R$ are collinear.