2002 APMO

1

Let $a_1,a_2,a_3,\ldots,a_n$ be a sequence of non-negative integers, where $n$ is a positive integer. Let \[ A_n={a_1+a_2+\cdots+a_n\over n}\ . \] Prove that \[ a_1!a_2!\ldots a_n!\ge\left(\lfloor A_n\rfloor !\right)^n \] where $\lfloor A_n\rfloor$ is the greatest integer less than or equal to $A_n$, and $a!=1\times 2\times\cdots\times a$ for $a\ge 1$(and $0!=1$). When does equality hold?

2

Find all positive integers $a$ and $b$ such that \[ {a^2+b\over b^2-a}\quad\mbox{and}\quad{b^2+a\over a^2-b} \] are both integers.

3

Let $ABC$ be an equilateral triangle. Let $P$ be a point on the side $AC$ and $Q$ be a point on the side $AB$ so that both triangles $ABP$ and $ACQ$ are acute. Let $R$ be the orthocentre of triangle $ABP$ and $S$ be the orthocentre of triangle $ACQ$. Let $T$ be the point common to the segments $BP$ and $CQ$. Find all possible values of $\angle CBP$ and $\angle BCQ$ such that the triangle $TRS$ is equilateral.

4

Let $x,y,z$ be positive numbers such that \[ {1\over x}+{1\over y}+{1\over z}=1. \] Show that \[ \sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z} \]

5

Let ${\bf R}$ denote the set of all real numbers. Find all functions $f$ from ${\bf R}$ to ${\bf R}$ satisfying: (i) there are only finitely many $s$ in ${\bf R}$ such that $f(s)=0$, and (ii) $f(x^4+y)=x^3f(x)+f(f(y))$ for all $x,y$ in ${\bf R}$.