2000 APMO

1

Compute the sum: $\sum_{i=0}^{101} \frac{x_i^3}{1-3x_i+3x_i^2}$ for $x_i=\frac{i}{101}$.

2

Find all permutations $a_1, a_2, \ldots, a_9$ of $1, 2, \ldots, 9$ such that \[ a_1+a_2+a_3+a_4=a_4+a_5+a_6+a_7= a_7+a_8+a_9+a_1 \] and \[ a_1^2+a_2^2+a_3^2+a_4^2=a_4^2+a_5^2+a_6^2+a_7^2= a_7^2+a_8^2+a_9^2+a_1^2 \]

3

Let $ABC$ be a triangle. Let $M$ and $N$ be the points in which the median and the angle bisector, respectively, at $A$ meet the side $BC$. Let $Q$ and $P$ be the points in which the perpendicular at $N$ to $NA$ meets $MA$ and $BA$, respectively. And $O$ the point in which the perpendicular at $P$ to $BA$ meets $AN$ produced. Prove that $QO$ is perpendicular to $BC$.

4

Let $n,k$ be given positive integers with $n>k$. Prove that: \[ \frac{1}{n+1} \cdot \frac{n^n}{k^k (n-k)^{n-k}} < \frac{n!}{k! (n-k)!} < \frac{n^n}{k^k(n-k)^{n-k}} \]

5

Given a permutation ($a_0, a_1, \ldots, a_n$) of the sequence $0, 1,\ldots, n$. A transportation of $a_i$ with $a_j$ is called legal if $a_i=0$ for $i>0$, and $a_{i-1}+1=a_j$. The permutation ($a_0, a_1, \ldots, a_n$) is called regular if after a number of legal transportations it becomes ($1,2, \ldots, n,0$). For which numbers $n$ is the permutation ($1, n, n-1, \ldots, 3, 2, 0$) regular?