1994 APMO

1

Let $f: \Bbb{R} \rightarrow \Bbb{R}$ be a function such that (i) For all $x,y \in \Bbb{R}$, \[ f(x)+f(y)+1 \geq f(x+y) \geq f(x)+f(y) \] (ii) For all $x \in [0,1)$, $f(0) \geq f(x)$, (iii) $-f(-1) = f(1) = 1$. Find all such functions $f$.

2

Given a nondegenerate triangle $ABC$, with circumcentre $O$, orthocentre $H$, and circumradius $R$, prove that $|OH| < 3R$.

3

Let $n$ be an integer of the form $a^2 + b^2$, where $a$ and $b$ are relatively prime integers and such that if $p$ is a prime, $p \leq \sqrt{n}$, then $p$ divides $ab$. Determine all such $n$.

4

Is there an infinite set of points in the plane such that no three points are collinear, and the distance between any two points is rational?

5

You are given three lists $A$, $B$, and $C$. List $A$ contains the numbers of the form $10^k$ in base $10$, with $k$ any integer greater than or equal to $1$. Lists $B$ and $C$ contain the same numbers translated into base $2$ and $5$ respectively: $$\begin{array}{lll} A & B & C \\ 10 & 1010 & 20 \\ 100 & 1100100 & 400 \\ 1000 & 1111101000 & 13000 \\ \vdots & \vdots & \vdots \end{array}$$ Prove that for every integer $n > 1$, there is exactly one number in exactly one of the lists $B$ or $C$ that has exactly $n$ digits.