1989 APMO

1

Let $x_1$, $x_2$, $\cdots$, $x_n$ be positive real numbers, and let \[ S = x_1 + x_2 + \cdots + x_n. \] Prove that \[ (1 + x_1)(1 + x_2) \cdots (1 + x_n) \leq 1 + S + \frac{S^2}{2!} + \frac{S^3}{3!} + \cdots + \frac{S^n}{n!} \]

2

Prove that the equation \[ 6(6a^2 + 3b^2 + c^2) = 5n^2 \] has no solutions in integers except $a = b = c = n = 0$.

3

Let $A_1$, $A_2$, $A_3$ be three points in the plane, and for convenience, let $A_4= A_1$, $A_5 = A_2$. For $n = 1$, $2$, and $3$, suppose that $B_n$ is the midpoint of $A_n A_{n+1}$, and suppose that $C_n$ is the midpoint of $A_n B_n$. Suppose that $A_n C_{n+1}$ and $B_n A_{n+2}$ meet at $D_n$, and that $A_n B_{n+1}$ and $C_n A_{n+2}$ meet at $E_n$. Calculate the ratio of the area of triangle $D_1 D_2 D_3$ to the area of triangle $E_1 E_2 E_3$.

4

Let $S$ be a set consisting of $m$ pairs $(a,b)$ of positive integers with the property that $1 \leq a < b \leq n$. Show that there are at least \[ 4m \cdot \dfrac{(m - \dfrac{n^2}{4})}{3n} \] triples $(a,b,c)$ such that $(a,b)$, $(a,c)$, and $(b,c)$ belong to $S$.

5

Determine all functions $f$ from the reals to the reals for which (1) $f(x)$ is strictly increasing and (2) $f(x) + g(x) = 2x$ for all real $x$, where $g(x)$ is the composition inverse function to $f(x)$. (Note: $f$ and $g$ are said to be composition inverses if $f(g(x)) = x$ and $g(f(x)) = x$ for all real $x$.)