A finite set of integers is called bad if its elements add up to $2010$. A finite set of integers is a Benelux-set if none of its subsets is bad. Determine the smallest positive integer $n$ such that the set $\{502, 503, 504, . . . , 2009\}$ can be partitioned into $n$ Benelux-sets. (A partition of a set $S$ into $n$ subsets is a collection of $n$ pairwise disjoint subsets of $S$, the union of which equals $S$.) (2nd Benelux Mathematical Olympiad 2010, Problem 1)
2010 Benelux
April 23rd
Find all polynomials $p(x)$ with real coeffcients such that \[p(a + b - 2c) + p(b + c - 2a) + p(c + a - 2b) = 3p(a - b) + 3p(b - c) + 3p(c - a)\] for all $a, b, c\in\mathbb{R}$. (2nd Benelux Mathematical Olympiad 2010, Problem 2)
On a line $l$ there are three different points $A$, $B$ and $P$ in that order. Let $a$ be the line through $A$ perpendicular to $l$, and let $b$ be the line through $B$ perpendicular to $l$. A line through $P$, not coinciding with $l$, intersects $a$ in $Q$ and $b$ in $R$. The line through $A$ perpendicular to $BQ$ intersects $BQ$ in $L$ and $BR$ in $T$. The line through $B$ perpendicular to $AR$ intersects $AR$ in $K$ and $AQ$ in $S$. (a) Prove that $P$, $T$, $S$ are collinear. (b) Prove that $P$, $K$, $L$ are collinear. (2nd Benelux Mathematical Olympiad 2010, Problem 3)
Find all quadruples $(a, b, p, n)$ of positive integers, such that $p$ is a prime and \[a^3 + b^3 = p^n\mbox{.}\] (2nd Benelux Mathematical Olympiad 2010, Problem 4)