Let f be a function that satisfies the following conditions: $(i)$ If $x > y$ and $f(y) - y \geq v \geq f(x) - x$, then $f(z) = v + z$, for some number $z$ between $x$ and $y$. $(ii)$ The equation $f(x) = 0$ has at least one solution, and among the solutions of this equation, there is one that is not smaller than all the other solutions; $(iii)$ $f(0) = 1$. $(iv)$ $f(1987) \leq 1988$. $(v)$ $f(x)f(y) = f(xf(y) + yf(x) - xy)$. Find $f(1987)$. Proposed by Australia.
1987 IMO Shortlist
At a party attended by $n$ married couples, each person talks to everyone else at the party except his or her spouse. The conversations involve sets of persons or cliques $C_1, C_2, \cdots, C_k$ with the following property: no couple are members of the same clique, but for every other pair of persons there is exactly one clique to which both members belong. Prove that if $n \geq 4$, then $k \geq 2n$. Proposed by USA.
Does there exist a second-degree polynomial $p(x, y)$ in two variables such that every non-negative integer $ n $ equals $p(k,m)$ for one and only one ordered pair $(k,m)$ of non-negative integers? Proposed by Finland.
Let $ABCDEFGH$ be a parallelepiped with $AE \parallel BF \parallel CG \parallel DH$. Prove the inequality \[AF + AH + AC \leq AB + AD + AE + AG.\] In what cases does equality hold? Proposed by France.
Find, with proof, the point $P$ in the interior of an acute-angled triangle $ABC$ for which $BL^2+CM^2+AN^2$ is a minimum, where $L,M,N$ are the feet of the perpendiculars from $P$ to $BC,CA,AB$ respectively. Proposed by United Kingdom.
Show that if $a, b, c$ are the lengths of the sides of a triangle and if $2S = a + b + c$, then \[\frac{a^n}{b+c} + \frac{b^n}{c+a} +\frac{c^n}{a+b} \geq \left(\dfrac 23 \right)^{n-2}S^{n-1} \quad \forall n \in \mathbb N \] Proposed by Greece.
Given five real numbers $u_0, u_1, u_2, u_3, u_4$, prove that it is always possible to find five real numbers $v0, v_1, v_2, v_3, v_4$ that satisfy the following conditions: $(i)$ $u_i-v_i \in \mathbb N, \quad 0 \leq i \leq 4$ $(ii)$ $\sum_{0 \leq i<j \leq 4} (v_i - v_j)^2 < 4.$ Proposed by Netherlands.
(a) Let $\gcd(m, k) = 1$. Prove that there exist integers $a_1, a_2, . . . , a_m$ and $b_1, b_2, . . . , b_k$ such that each product $a_ib_j$ ($i = 1, 2, \cdots ,m; \ j = 1, 2, \cdots, k$) gives a different residue when divided by $mk.$ (b) Let $\gcd(m, k) > 1$. Prove that for any integers $a_1, a_2, . . . , a_m$ and $b_1, b_2, . . . , b_k$ there must be two products $a_ib_j$ and $a_sb_t$ ($(i, j) \neq (s, t)$) that give the same residue when divided by $mk.$ Proposed by Hungary.
Does there exist a set $M$ in usual Euclidean space such that for every plane $\lambda$ the intersection $M \cap \lambda$ is finite and nonempty ? Proposed by Hungary. RemarkI'm not sure I'm posting this in a right Forum.
Let $S_1$ and $S_2$ be two spheres with distinct radii that touch externally. The spheres lie inside a cone $C$, and each sphere touches the cone in a full circle. Inside the cone there are $n$ additional solid spheres arranged in a ring in such a way that each solid sphere touches the cone $C$, both of the spheres $S_1$ and $S_2$ externally, as well as the two neighboring solid spheres. What are the possible values of $n$? Proposed by Iceland.
Find the number of partitions of the set $\{1, 2, \cdots, n\}$ into three subsets $A_1,A_2,A_3$, some of which may be empty, such that the following conditions are satisfied: $(i)$ After the elements of every subset have been put in ascending order, every two consecutive elements of any subset have different parity. $(ii)$ If $A_1,A_2,A_3$ are all nonempty, then in exactly one of them the minimal number is even . Proposed by Poland.
Given a nonequilateral triangle $ABC$, the vertices listed counterclockwise, find the locus of the centroids of the equilateral triangles $A'B'C'$ (the vertices listed counterclockwise) for which the triples of points $A,B', C'; A',B, C';$ and $A',B', C$ are collinear. Proposed by Poland.
Is it possible to put $1987$ points in the Euclidean plane such that the distance between each pair of points is irrational and each three points determine a non-degenerate triangle with rational area? (IMO Problem 5) Proposed by Germany, DR
How many words with $n$ digits can be formed from the alphabet $\{0, 1, 2, 3, 4\}$, if neighboring digits must differ by exactly one? Proposed by Germany, FR.
Let $x_1,x_2,\ldots,x_n$ be real numbers satisfying $x_1^2+x_2^2+\ldots+x_n^2=1$. Prove that for every integer $k\ge2$ there are integers $a_1,a_2,\ldots,a_n$, not all zero, such that $|a_i|\le k-1$ for all $i$, and $|a_1x_1+a_2x_2+\ldots+a_nx_n|\le{(k-1)\sqrt n\over k^n-1}$. (IMO Problem 3) Proposed by Germany, FR
Let $p_n(k)$ be the number of permutations of the set $\{1,2,3,\ldots,n\}$ which have exactly $k$ fixed points. Prove that $\sum_{k=0}^nk p_n(k)=n!$.(IMO Problem 1) Original formulation Let $S$ be a set of $n$ elements. We denote the number of all permutations of $S$ that have exactly $k$ fixed points by $p_n(k).$ Prove: (a) $\sum_{k=0}^{n} kp_n(k)=n! \ ;$ (b) $\sum_{k=0}^{n} (k-1)^2 p_n(k) =n! $ Proposed by Germany, FR
Prove that there exists a four-coloring of the set $M = \{1, 2, \cdots, 1987\}$ such that any arithmetic progression with $10$ terms in the set $M$ is not monochromatic. Alternative formulation Let $M = \{1, 2, \cdots, 1987\}$. Prove that there is a function $f : M \to \{1, 2, 3, 4\}$ that is not constant on every set of $10$ terms from $M$ that form an arithmetic progression. Proposed by Romania
For any integer $r \geq 1$, determine the smallest integer $h(r) \geq 1$ such that for any partition of the set $\{1, 2, \cdots, h(r)\}$ into $r$ classes, there are integers $a \geq 0 \ ; 1 \leq x \leq y$, such that $a + x, a + y, a + x + y$ belong to the same class. Proposed by Romania
Let $\alpha,\beta,\gamma$ be positive real numbers such that $\alpha+\beta+\gamma < \pi$, $\alpha+\beta > \gamma$,$ \beta+\gamma > \alpha$, $\gamma + \alpha > \beta.$ Prove that with the segments of lengths $\sin \alpha, \sin \beta, \sin \gamma $ we can construct a triangle and that its area is not greater than \[A=\dfrac 18\left( \sin 2\alpha+\sin 2\beta+ \sin 2\gamma \right).\] Proposed by Soviet Union
Let $n\ge2$ be an integer. Prove that if $k^2+k+n$ is prime for all integers $k$ such that $0\le k\le\sqrt{n\over3}$, then $k^2+k+n$ is prime for all integers $k$ such that $0\le k\le n-2$.(IMO Problem 6) Original Formulation Let $f(x) = x^2 + x + p$, $p \in \mathbb N.$ Prove that if the numbers $f(0), f(1), \cdots , f(\sqrt{p\over 3} )$ are primes, then all the numbers $f(0), f(1), \cdots , f(p - 2)$ are primes. Proposed by Soviet Union.
In an acute-angled triangle $ABC$ the interior bisector of angle $A$ meets $BC$ at $L$ and meets the circumcircle of $ABC$ again at $N$. From $L$ perpendiculars are drawn to $AB$ and $AC$, with feet $K$ and $M$ respectively. Prove that the quadrilateral $AKNM$ and the triangle $ABC$ have equal areas.(IMO Problem 2) Proposed by Soviet Union.
Does there exist a function $f : \mathbb N \to \mathbb N$, such that $f(f(n)) =n + 1987$ for every natural number $n$? (IMO Problem 4) Proposed by Vietnam.
Prove that for every natural number $k$ ($k \geq 2$) there exists an irrational number $r$ such that for every natural number $m$, \[[r^m] \equiv -1 \pmod k .\] Remark. An easier variant: Find $r$ as a root of a polynomial of second degree with integer coefficients. Proposed by Yugoslavia.