1984 IMO Shortlist

1

Find all solutions of the following system of $n$ equations in $n$ variables: \[\begin{array}{c}\ x_1|x_1| - (x_1 - a)|x_1 - a| = x_2|x_2|,x_2|x_2| - (x_2 - a)|x_2 - a| = x_3|x_3|,\ \vdots \ x_n|x_n| - (x_n - a)|x_n - a| = x_1|x_1|\end{array}\] where $a$ is a given number.

2

Prove: (a) There are infinitely many triples of positive integers $m, n, p$ such that $4mn - m- n = p^2 - 1.$ (b) There are no positive integers $m, n, p$ such that $4mn - m- n = p^2.$

3

Find all positive integers $n$ such that \[n=d_6^2+d_7^2-1,\] where $1 = d_1 < d_2 < \cdots < d_k = n$ are all positive divisors of the number $n.$

4

Let $ d$ be the sum of the lengths of all the diagonals of a plane convex polygon with $ n$ vertices (where $ n>3$). Let $ p$ be its perimeter. Prove that: \[ n-3<{2d\over p}<\Bigl[{n\over2}\Bigr]\cdot\Bigl[{n+1\over 2}\Bigr]-2,\] where $ [x]$ denotes the greatest integer not exceeding $ x$.

5

Prove that $0\le yz+zx+xy-2xyz\le{7\over27}$, where $x,y$ and $z$ are non-negative real numbers satisfying $x+y+z=1$.

6

Let $c$ be a positive integer. The sequence $\{f_n\}$ is defined as follows: \[f_1 = 1, f_2 = c, f_{n+1} = 2f_n - f_{n-1} + 2 \quad (n \geq 2).\] Show that for each $k \in \mathbb N$ there exists $r \in \mathbb N$ such that $f_kf_{k+1}= f_r.$

7

(a) Decide whether the fields of the $8 \times 8$ chessboard can be numbered by the numbers $1, 2, \dots , 64$ in such a way that the sum of the four numbers in each of its parts of one of the forms is divisible by four. (b) Solve the analogous problem for

8

Given points $O$ and $A$ in the plane. Every point in the plane is colored with one of a finite number of colors. Given a point $X$ in the plane, the circle $C(X)$ has center $O$ and radius $OX+{\angle AOX\over OX}$, where $\angle AOX$ is measured in radians in the range $[0,2\pi)$. Prove that we can find a point $X$, not on $OA$, such that its color appears on the circumference of the circle $C(X)$.

9

Let $a, b, c$ be positive numbers with $\sqrt a +\sqrt b +\sqrt c = \frac{\sqrt 3}{2}$. Prove that the system of equations \[\sqrt{y-a}+\sqrt{z-a}=1,\] \[\sqrt{z-b}+\sqrt{x-b}=1,\] \[\sqrt{x-c}+\sqrt{y-c}=1\] has exactly one solution $(x, y, z)$ in real numbers.

10

Prove that the product of five consecutive positive integers cannot be the square of an integer.

11

Let $n$ be a positive integer and $a_1, a_2, \dots , a_{2n}$ mutually distinct integers. Find all integers $x$ satisfying \[(x - a_1) \cdot (x - a_2) \cdots (x - a_{2n}) = (-1)^n(n!)^2.\]

12

Find one pair of positive integers $a,b$ such that $ab(a+b)$ is not divisible by $7$, but $(a+b)^7-a^7-b^7$ is divisible by $7^7$.

13

Prove that the volume of a tetrahedron inscribed in a right circular cylinder of volume $1$ does not exceed $\frac{2}{3 \pi}.$

14

Let $ABCD$ be a convex quadrilateral with the line $CD$ being tangent to the circle on diameter $AB$. Prove that the line $AB$ is tangent to the circle on diameter $CD$ if and only if the lines $BC$ and $AD$ are parallel.

15

Angles of a given triangle $ABC$ are all smaller than $120^\circ$. Equilateral triangles $AFB, BDC$ and $CEA$ are constructed in the exterior of $ABC$. (a) Prove that the lines $AD, BE$, and $CF$ pass through one point $S.$ (b) Prove that $SD + SE + SF = 2(SA + SB + SC).$

16

Let $a,b,c,d$ be odd integers such that $0<a<b<c<d$ and $ad=bc$. Prove that if $a+d=2^k$ and $b+c=2^m$ for some integers $k$ and $m$, then $a=1$.

17

In a permutation $(x_1, x_2, \dots , x_n)$ of the set $1, 2, \dots , n$ we call a pair $(x_i, x_j )$ discordant if $i < j$ and $x_i > x_j$. Let $d(n, k)$ be the number of such permutations with exactly $k$ discordant pairs. Find $d(n, 2)$ and $d(n, 3).$

18

Inside triangle $ABC$ there are three circles $k_1, k_2, k_3$ each of which is tangent to two sides of the triangle and to its incircle $k$. The radii of $k_1, k_2, k_3$ are $1, 4$, and $9$. Determine the radius of $k.$

19

The harmonic table is a triangular array: $1$ $\frac 12 \qquad \frac 12$ $\frac 13 \qquad \frac 16 \qquad \frac 13$ $\frac 14 \qquad \frac 1{12} \qquad \frac 1{12} \qquad \frac 14$ Where $a_{n,1} = \frac 1n$ and $a_{n,k+1} = a_{n-1,k} - a_{n,k}$ for $1 \leq k \leq n-1.$ Find the harmonic mean of the $1985^{th}$ row.

20

Determine all pairs $(a, b)$ of positive real numbers with $a \neq 1$ such that \[\log_a b < \log_{a+1} (b + 1).\]