1974 IMO Shortlist

1

Three players $A,B$ and $C$ play a game with three cards and on each of these $3$ cards it is written a positive integer, all $3$ numbers are different. A game consists of shuffling the cards, giving each player a card and each player is attributed a number of points equal to the number written on the card and then they give the cards back. After a number $(\geq 2)$ of games we find out that A has $20$ points, $B$ has $10$ points and $C$ has $9$ points. We also know that in the last game B had the card with the biggest number. Who had in the first game the card with the second value (this means the middle card concerning its value).

2

Prove that the squares with sides $\frac{1}{1}, \frac{1}{2}, \frac{1}{3},\ldots$ may be put into the square with side $\frac{3}{2} $ in such a way that no two of them have any interior point in common.

3

Let $P(x)$ be a polynomial with integer coefficients. We denote $\deg(P)$ its degree which is $\geq 1.$ Let $n(P)$ be the number of all the integers $k$ for which we have $(P(k))^{2}=1.$ Prove that $n(P)- \deg(P) \leq 2.$

4

The sum of the squares of five real numbers $a_1, a_2, a_3, a_4, a_5$ equals $1$. Prove that the least of the numbers $(a_i - a_j)^2$, where $i, j = 1, 2, 3, 4,5$ and $i \neq j$, does not exceed $\frac{1}{10}.$

5

Let $A_r,B_r, C_r$ be points on the circumference of a given circle $S$. From the triangle $A_rB_rC_r$, called $\Delta_r$, the triangle $\Delta_{r+1}$ is obtained by constructing the points $A_{r+1},B_{r+1}, C_{r+1} $on $S$ such that $A_{r+1}A_r$ is parallel to $B_rC_r$, $B_{r+1}B_r$ is parallel to $C_rA_r$, and $C_{r+1}C_r$ is parallel to $A_rB_r$. Each angle of $\Delta_1$ is an integer number of degrees and those integers are not multiples of $45$. Prove that at least two of the triangles $\Delta_1,\Delta_2, \ldots ,\Delta_{15}$ are congruent.

6

Prove that for any n natural, the number \[ \sum \limits_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k} \] cannot be divided by $5$.

Click for solution i have a simpler (though a little longer) solution: re-write your sum: \[ a_n = \sum_{k = 0}^{n} \binom{2n + 1}{2k + 1} 2^{3k} = \frac {(1 + 2\sqrt2)^{2n + 1} + (1 - 2\sqrt2)^{2n + 1}}{2} \] now, what i've wrote is a sequence, generated by recurrence: $ a_{n + 1} = 18a_n - 49a_{n - 1}$, whose first terms are $ a_0 = 1, a_1 = 11$. it's an easy check to show that no terms can be $ 0 \mod 5$, since sequence has a short period...

7

Let $a_i, b_i$ be coprime positive integers for $i = 1, 2, \ldots , k$, and $m$ the least common multiple of $b_1, \ldots , b_k$. Prove that the greatest common divisor of $a_1 \frac{m}{b_1} , \ldots, a_k \frac{m}{b_k}$ equals the greatest common divisor of $a_1, \ldots , a_k.$

8

The variables $a,b,c,d,$ traverse, independently from each other, the set of positive real values. What are the values which the expression \[ S= \frac{a}{a+b+d} + \frac{b}{a+b+c} + \frac{c}{b+c+d} + \frac{d}{a+c+d} \] takes?

9

Let $x, y, z$ be real numbers each of whose absolute value is different from $\frac{1}{\sqrt 3}$ such that $x + y + z = xyz$. Prove that \[\frac{3x - x^3}{1-3x^2} + \frac{3y - y^3}{1-3y^2} + \frac{3z -z^3}{1-3z^2} = \frac{3x - x^3}{1-3x^2} \cdot \frac{3y - y^3}{1-3y^2} \cdot \frac{3z - z^3}{1-3z^2}\]

10

Let $ABC$ be a triangle. Prove that there exists a point $D$ on the side $AB$ of the triangle $ABC$, such that $CD$ is the geometric mean of $AD$ and $DB$, iff the triangle $ABC$ satisfies the inequality $\sin A\sin B\le\sin^2\frac{C}{2}$. CommentAlternative formulation, from IMO ShortList 1974, Finland 2: We consider a triangle $ABC$. Prove that: $\sin(A) \sin(B) \leq \sin^2 \left( \frac{C}{2} \right)$ is a necessary and sufficient condition for the existence of a point $D$ on the segment $AB$ so that $CD$ is the geometrical mean of $AD$ and $BD$.

11

We consider the division of a chess board $8 \times 8$ in p disjoint rectangles which satisfy the conditions: a) every rectangle is formed from a number of full squares (not partial) from the 64 and the number of white squares is equal to the number of black squares. b) the numbers $\ a_{1}, \ldots, a_{p}$ of white squares from $p$ rectangles satisfy $a_1, , \ldots, a_p.$ Find the greatest value of $p$ for which there exists such a division and then for that value of $p,$ all the sequences $a_{1}, \ldots, a_{p}$ for which we can have such a division. Moderator says: see https://artofproblemsolving.com/community/c6h58591

12

In a certain language words are formed using an alphabet of three letters. Some words of two or more letters are not allowed, and any two such distinct words are of different lengths. Prove that one can form a word of arbitrary length that does not contain any non-allowed word.