$f$ and $g$ are real-valued functions defined on the real line. For all $x$ and $y, f(x+y)+f(x-y)=2f(x)g(y)$. $f$ is not identically zero and $|f(x)|\le1$ for all $x$. Prove that $|g(x)|\le1$ for all $x$.
1972 IMO Shortlist
We are given $3n$ points $A_1,A_2, \ldots , A_{3n}$ in the plane, no three of them collinear. Prove that one can construct $n$ disjoint triangles with vertices at the points $A_i.$
The least number is $m$ and the greatest number is $M$ among $ a_1 ,a_2 ,\ldots,a_n$ satisfying $ a_1 +a_2 +...+a_n =0$. Prove that \[ a_1^2 +\cdots +a_n^2 \le-nmM\]
Let $n_1, n_2$ be positive integers. Consider in a plane $E$ two disjoint sets of points $M_1$ and $M_2$ consisting of $2n_1$ and $2n_2$ points, respectively, and such that no three points of the union $M_1 \cup M_2$ are collinear. Prove that there exists a straightline $g$ with the following property: Each of the two half-planes determined by $g$ on $E$ ($g$ not being included in either) contains exactly half of the points of $M_1$ and exactly half of the points of $M_2.$
Prove the following assertion: The four altitudes of a tetrahedron $ABCD$ intersect in a point if and only if \[AB^2 + CD^2 = BC^2 + AD^2 = CA^2 + BD^2.\]
Show that for any $n \not \equiv 0 \pmod{10}$ there exists a multiple of $n$ not containing the digit $0$ in its decimal expansion.
Given four distinct parallel planes, prove that there exists a regular tetrahedron with a vertex on each plane.
Prove that $(2m)!(2n)!$ is a multiple of $m!n!(m+n)!$ for any non-negative integers $m$ and $n$.
Find all positive real solutions to: \begin{eqnarray*} (x_1^2-x_3x_5)(x_2^2-x_3x_5) &\le& 0 \\ (x_2^2-x_4x_1)(x_3^2-x_4x_1) &\le& 0 \\ (x_3^2-x_5x_2)(x_4^2-x_5x_2) &\le& 0 \\ (x_4^2-x_1x_3)(x_5^2-x_1x_3) &\le & 0 \\ (x_5^2-x_2x_4)(x_1^2-x_2x_4) &\le& 0 \\ \end{eqnarray*}
Given $n>4$, prove that every cyclic quadrilateral can be dissected into $n$ cyclic quadrilaterals.
Consider a sequence of circles $K_1,K_2,K_3,K_4, \ldots$ of radii $r_1, r_2, r_3, r_4, \ldots$ , respectively, situated inside a triangle $ABC$. The circle $K_1$ is tangent to $AB$ and $AC$; $K_2$ is tangent to $K_1$, $BA$, and $BC$; $K_3$ is tangent to $K_2$, $CA$, and $CB$; $K_4$ is tangent to $K_3$, $AB$, and $AC$; etc. (a) Prove the relation \[r_1 \cot \frac 12 A+ 2 \sqrt{r_1r_2} + r_2 \cot \frac 12 B = r \left(\cot \frac 12 A + \cot \frac 12 B \right) \] where $r$ is the radius of the incircle of the triangle $ABC$. Deduce the existence of a $t_1$ such that \[r_1=r \cot \frac 12 B \cot \frac 12 C \sin^2 t_1\] (b) Prove that the sequence of circles $K_1,K_2, \ldots $ is periodic.
Prove that from a set of ten distinct two-digit numbers, it is always possible to find two disjoint subsets whose members have the same sum.