The five real numbers $v,w,x,y,s$ satisfy the system of equations \begin{align*} v&=wx+ys,\\ v^2&=w^2x+y^2s,\\ v^3&=w^3x+y^3s. \end{align*}Show that at least two of them are equal.
2024 German National Olympiad
Day 1 (June 7, 2024)
Six quadratic mirrors are put together to form a cube $ABCDEFGH$ with a mirrored interior. At each of the eight vertices, there is a tiny hole through which a laser beam can enter and leave the cube. A laser beam enters the cube at vertex $A$ in a direction not parallel to any of the cube's sides. If the beam hits a side, it is reflected; if it hits an edge, the light is absorbed, and if it hits a vertex, it leaves the cube. For each positive integer $n$, determine the set of vertices where the laser beam can leave the cube after exactly $n$ reflections.
At a party, $25$ elves give each other presents. No elf gives a present to herself. Each elf gives a present to at least one other elf, but no elf gives a present to all other elves. Show that it is possible to choose a group of three elves including at least two elves who give a present to exactly one of the other two elves in the group.
Day 2 (June 8, 2024)
Let $k>2$ be a positive integer such that the $k$-digit number $n_k=133\dots 3$, consisting of a digit $1$ followed by $k-1$ digits $3$ is prime. Show that $24 \mid k(k+2)$.
Let $\triangle ABC$ be a triangle and let $X$ be a point in the interior of the triangle. The second intersection points of the lines $XA,XB$ and $XC$ with the circumcircle of $\triangle ABC$ are $P,Q$ and $R$. Let $U$ be a point on the ray $XP$ (these are the points on the line $XP$ such that $P$ and $U$ lie on the same side of $X$). The line through $U$ parallel to $AB$ intersects $BQ$ in $V$ . The line through $U$ parallel to $AC$ intersects $CR$ in $W$. Prove that $Q, R, V$ , and $W$ lie on a circle.
Decide whether there exists a largest positive integer $n$ such that the inequality \[\frac{\frac{a^2}{b}+\frac{b^2}{a}}{2} \ge \sqrt[n]{\frac{a^n+b^n}{2}}\]holds for all positive real numbers $a$ and $b$. If such a largest positive integer $n$ exists, determine it.